Wednesday, August 15, 2012

What I expect of my PhD students

Every graduate student needs to be aware of expectations.  Each adviser is unique and operates on different principles.  A small number view their students as a pair of hands to do the dirty work.  In the old days, some advisers expected their grad students to mow their lawn and do housework. A friend of mine from grad school had an old-school adviser who had him come to his place on the weekend for services.  However, most faculty members by that time had already moved into the modern era and this kind of despicable practice is no longer tolerated.

It is important that each student have an understanding of what they are getting into when they join a research group. Here I will explain what I expect.

My highest principle is thinking of a graduate student as a junior-colleague-to-be.  Even the best students start out incapable of doing real research.  They are clumsy in the lab and need lots of hard work to sharpen their analytical skills.  As such, my first criterion is that they be good students who like to learn.  That doesn't mean that they need to be straight-A students.  In fact, many A students make poor researchers because they lack creativity.

On the topic of classes, I believe that the more the better.  I encourage students who are in the middle of their research phase to take classes.  Ironically, the students themselves resist because they feel it interferes with research.  Even some of my colleagues prefer that their students not take courses that are not of direct help to the research at hand.  I strongly disagree with this premise. The process of learning new things sows new ideas.  I myself enjoy learning because these new nuggets of knowledge invariably get incorporated into my research, which leads to totally new and wonderful directions.

Principle 1.  Always keep learning from classes, reading the literature, and just thinking about crazy ideas.  If you feel yourself to be leaving your comfort zone, you are on the right track.  I expect my students to never stop learning and to be constantly pushing themselves.

An important part of being a PhD scientist is independence.  Grants, which support research activities, expect results.  Many advisers thus give their students a very short leash.  The end result is bad for the student's independence.  I prefer to give the student a specific assignment, and let her and him work on it for a year or so without giving them a detailed map of how to get there.  However, I do give lots of course corrections and teach them things they need to know along the way (or send them to the literature) if their struggles are based on missing information.

I once had a PhD student who complained that I seemed to be giving another student lots of attention while neglecting him.  I treat PhD and masters degrees differently.  The individual with a masters degree needs skills to survive in industry, while a PhD scientist is required to come up with new ideas and find ways to tackle a new problem.  Having said that, some of my best and independent students happened to be masters students who were quite capable of getting a PhD.

Principle 2. Learn to be self reliant early on in your research.  Read the literature and talk to others to gain the skills you need to do your work, but don't wait for someone to tell you what to do with those skills.  Constantly try new things in the lab or with paper and pencil to both sharpen your skills and generate new ideas.  You will make lots of mistakes along the way when not given step-by-step instructions, but making these mistakes and getting through them are the most important part of the experience.

I do not yell at my students, ever.  I may tell them when I am displeased with research performance, but if a student does not perform, (s)he will not get a degree.  Passing the Prelim and being in a research group is no guarantee of success.   I disagree with the idea espoused by the administration that we need to help the students along so that we increase our graduation rate.  Graduating a PhD without the proper skills and talents serves nobody.  A PhD degree is not a ticket to a good job.  It's the skills that the individual has mastered and the ability to think independently that makes him or her valuable to society.  A huge pool of unemployed physicists is not what we want to be generating.

It takes lots of hard work and perseverance to finish a PhD degree.  People often ask me how many hours they should work.  My answer is all the time.  If you are not excited by your work and don't enjoy thinking about physics beyond your area of expertise, then you're in the wrong field.  Academic jobs are tough to get, and real research jobs in industry are rare.  However, PhD physicists have lots of success in engineering jobs, which are more plentiful.  If you like to tinker, then engineering may be an excellent way to earn a good living while having fun.

A PhD degree should not only be a guarantee of skills, but of work effort and perseverance.

Principle 3.  Approach your research with a passion.  The benefit of enjoying your work, aside form the direct rush of endorphins, is that you will put in the time required to do a good job.

One of the most important attributes is perseverance.  Watching Star Trek, or other sci-fi shows/movies gives one the impression that scientists apply skills to very easily solve problems.  This is not the case unless a student is super lucky.  I have a long list of stories on the same theme;  students who would spend months trying to get an experiment to run, only to have to start from scratch to try a different approach.  Aside from being good problem solvers, the PhD degree is an imprimatur of a person that does not give up.

In my PhD work, I had spent quite some time building an experiment on a 5' x 10' table optical table, which was filled with all sorts of laser sources and optics, resembling a Borg city.  Each step in the process often required a step backwards.  After completing the construction of the experiment, it still didn't work.  I then figured out the reason, tore the experiment apart and rebuilt the whole thing on another optical table with another laser.  Luckily, it ended up working.  Only then could I start taking the data that was the topic of my thesis.

Principle 4. Don't give up.  When something doesn't work, don't shy away from the problem.  Work twice as hard.  This will serve you well in all aspects of your lives.  When I was a new faculty member, aware of the importance of getting grants, I would write two new proposals for every one that did not get funded.  After my first two years, I built a healthy portfolio of projects.

Many people do not recognize the creativity behind science.  Creativity is part of choosing a scientific problem to study, helps in problem solving, and leads to interesting new science.

Principle 5.  Be creative.  Always think about neat implications of what you are doing or find new ways of looking at old problems.  This skill is particularity important in the career of young scientists who want to make it to the next level.

Principle 6.  Be meticulously careful in your work. Do not publish sloppy results, which will come back to haunt you, and always apply the highest standards to yourself.  You should be more critical of your own work than I am of you as your  adviser.  On the flip side, do not let this attitude prevent you from finishing a project.  In the end, we can never be sure if we are right, and there will always be a mistake somewhere.  If a paper is perfect, it is not science.  When working in the unknown, there are always huge dark shadows in the areas not exposed by your searchlight.

Principle 7.  Be honest with others, but especially with yourself.  Many very good scientists have fallen into the trap of fooling themselves into believing in something that is false.  Consider cold fusion, N-rays. etc.  Design experiments that are resistant to experimenter bias.  Also, do not try to make data fit your adviser's expectations.  I need to know when an experiment contradicts my viewpoint.  And it goes without saying that you should never fudge data in any way or plagiarize the work of others.

Principle 8. Impress me.  When you graduate, I need to make an honest assessment of your strengths and weaknesses in the letter of recommendation, which will determine your success on the job market.  Follow all of the above principles.  Do not come to my office to ask what you should do next.  Tell me the issues you are having, your line of reasoning, possible explanations, and engage me in debate about the possibilities.  You should act as a junior colleague.  Don't worry about offending me.  I am more interested in getting at the truth than being right.  However, that does not give you the right to be caustic.

What I have posted above mentions nothing of the content of the work, which is of central importance.  A short post cannot cover the nuances.  To zeroth-order approximation, I expect the student to add a new piece of physics to the body of knowledge.  This could be a theory that helps us understand a phenomenon or the discovery of a new phenomena.  Fitting data to a mathematical expression is not enough.  The parameters of the theory must have meaning that is independently testable, be interpretable in terms of fundamental processes, and make predictions well beyond the domain of the original results that generated the theory.  Perhaps I will write more on the topic later.

If you approach everything in life with a passion, it will be a fulfilling one.   When you take a break from physics, make it count.  While I may seem one-dimensional in this post, I do find time for other activities.  Though I am not good at it, I play ice hockey with a passion.  I enjoy playing the piano and writing.  Taking a break from work is, in a sense, work.  During times of alternate activities, things percolate in the brain.  I have had the most profound revelations while driving my car in the middle of nowhere or playing the piano.  So, don't hesitate to take a break with intense activities.

I have to run now.  After I finish packing, I will take a short walk around San Diego, then I have to catch a plane back to Pullman.  Until then, get excited about physics.


  1. Right on! I wish my advisor had given me this kind of document at the start - things would have been a lot clearer. Principle 6 will be more convincing if you apply it to this blog entry, e.g., criterion vs criteria, phenomenon vs phenomena, Wen (typo), etc. is of some help to my students, but not perfect.

    1. Thanks for the comments. One must prioritize where to spend time, so I let things slip in blog posts. I agree that in this case, I should have been more careful. Thanks for suggesting I like it.

  2. I'm not a scientist, but I'm a big fan of science and I love your post. I've met a few people with PhDs who made me wonder how they could possibly have one so I can see there is, unfortunately, quite a lot of variation in what 'PhD' can signify.

    I can't really comment on the substance of your post except to say it sounds great to me. I wonder about the double spaces after the full stops, isn't that a hangover from typewriter days and not usually done nowadays? Also, s/he is pretty clumsy. The singular they is used by almost everyone in the English speaking world in everyday speech, without the user even being aware of it. 'They' has a long history in written English going back to well before Shakespeare. As an enby, it's my preferred pronoun but it is more versatile than that.

    1. We are always under pressure to graduate students because the percentage that get through is sometimes a measure of "quality." If we let poor students get through, then our reputation dives and it's harder for the good grads to get jobs. Our department tries to keep standards moderately high against pressure from both ends.

      Wow, you are observant to notice the double spaces. I didn't think it had anything to do with typewriters, just a convention no different than starting a sentence with a cap. I always get skewered for using they (which I tend to do) in place of he or she because the former is plural while the latter singular. I guess there will always be critics on both sides of that. Here is a single space as my foray into modern times.

    2. It's not widely recognised that 'they' can be singular. That's despite the undoubted fact the singular they has always been used extensively, for many hundreds of years, both in conversation and in print. Methinks I read somewheres that in the 1800s grammarians ganged-up on the poor thing and tried to outlaw it, with *singular* lack of success.

      I wrote a little about this in my article about Mx (a non-binary transgender title):

    3. Thanks for the information and the link. What I had totally missed was the fact that he and she misses many alternatives and this usage is as antiquated as writers of the past using the masculine to the exclusion of all others. Henceforward, I will use my preferred "they" without excuse.

  3. Hi Mark,
    As a junior faculty I apreciarte what you put together here. I just had the number of grad students in my lab double and I felt the need to put down some of these expectations for all students. You mention a few additional important points that I will incorporate into my draft. Thanks, sounds like you are doing great with your lab.
    Best wishes,

    1. Glad that this was of some help. I sometimes go back to it when things come up. Sounds like your career will be a successful one. Good luck!