In a recent post on our research on self healing, I discussed our new theory, which is posted in the Physics Archives (see it here). The paper has been accepted for publication in the Journal of Chemical Physics and will appear soon.
We used lots of data as input to construct the model, which took years to complete. Data that seemed to support one model initially would later be contradicted by additional data. Over time, the model evolved into a coherent picture as more hypotheses were eliminated by experiments. Finally, we had a model that fit the data AND had as its cornerstone the formation of domains of molecules that together, would help a damaged molecule heal.
There is no direct evidence for domain formation, though the behavior of all the experiments to date are consistent with this model, and only this model. Remove the domains and the predicitve power of the theory is lost. The burning question pertains to the nature of the domains. What are they? Are they clumps of molecules or molecules that are somehow stuck to the same polymer chain? What is the nature of the force that keeps the domains together, and how is it that a domain of healthy molecules acts to promote healing in a damaged one?
We may be closer to an answer.
The lab is in a wonderful buzz of activity with lots of new measurements -- always an exciting time. There are bold new hypotheses based on initial data that generalize our model, followed by letdowns after new data or a more detailed calculation proves us wrong. The process is highly stimulating. I can just smell it; something new and wonderful is brewing.
In the midst of all this activity, I found myself sitting at my computer writing my conference paper for SPIE, where I will give a couple of papers in August. I completed writing the introduction and then explained our new model. What next? I needed something new that did not detract from the presentations of my students. So, I drew the molecular structures of the polymer and the molecules, and started to play with them, rotating this one this way and that one here, etc.
In less than a few minutes, I realized again that a molecule could stick to a polymer through what is called hydrogen bond -- an attractive force between a hydrogen molecule and in this case, an oxygen, very much like the forces found between water molecules. This thought had crossed my mind in the past, and is indeed a motivation for a subset of projects. However, having all this jumbled data running around my head made me realize that Shiva, my coauthor on the theory paper, had already determined the three parameters of our model, one of which is the force that binds the molecule to a domain. If the molecules are sticking to the polymer chain through a hydrogen bond, the hydrogen bond energy should have the same value as the corresponding parameter in the model.
This is an excellent example of a model that we built to explain the data is now guiding us in figuring out what is going on.
I got on the internet and searched for hydrogen boding and found a table of numbers. The energy between a hydrogen and oxygen was one of the first values listed, at 0.3 eV. Then I nervously clicked through the directory tree on my computer to find its measured value. As I scrolled to the table with the results, my eyes focused on the value of the lambda parameter -- 0.29 eV with an uncertainty of 0.01. The two matched!
It is not often that things work out this easily, so I considered the next question, and that was how self-healing is mediated by molecules attached to a chain. A polymer with molecules connected by hydrogen bonding looks a lot like a necklace (polymer) with pendents (molecules) thrown on the night dresser as shown in the figure below.The hypothesis that I proposed is as follows. (a) When a molecule absorbs a photon, (b) it breaks into two fragments that are charged. There is evidence from earlier work that charged species are involved. One of the fragments is fixed in place by the polymer and (c-e) the other hops from molecule to molecule along the chain (f) until it finds its mate and recombines.
An alternative explanation is that the attached fragment attracts a small fragment from a neighboring molecule. The neighboring molecule then attracts a fragment from its neighbor, and so on, which propogates down chain like a wave of fans at a stadium until the original damaged piece combines with an adjacent fragment. The more molecules in the domain (i.e number of molecules attached to a polymer chain), the bigger the chance that there is a contiguous path for the fragment to find a mate.
This is indeed an exciting time. In addition to this work, there are other very exciting developments that I will post in the near future. Breakthroughs can be addictive. I can't wait for the next one!
No comments:
Post a Comment